Influences of Thermal Relaxation Times on Generalized Thermoelastic Longitudinal Waves in Circular Cylinder
نویسنده
چکیده
This paper is concerned with propagation of thermoelastic longitudinal vibrations of an infinite circular cylinder, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). Three displacement potential functions are introduced to uncouple the equations of motion. The frequency equation, by using the traction free boundary conditions, is given in the form of a determinant involving Bessel functions. The roots of the frequency equation give the value of the characteristic circular frequency as function of the wave number. These roots, which correspond to various modes, are numerically computed and presented graphically for different values of the thermal relaxation times. It is found that the influences of the thermal relaxation times on the amplitudes of the elastic and thermal waves are remarkable. Also, it is shown in this study that the propagation of thermoelastic longitudinal vibrations based on the generalized thermoelasticity can differ significantly compared with the results under the classical formulation. A comparison of the results for the case with no thermal effects shows well agreement with some of the corresponding earlier results. Keywords—Wave propagation; longitudinal vibrations; circular cylinder; generalized thermoelasticity; Thermal relaxation times.
منابع مشابه
On the Dynamic Characteristic of Thermoelastic Waves in Thermoelastic Plates with Thermal Relaxation Times
In this paper, analysis for the propagation of general anisotropic media of finite thickness with two thermal relaxation times is studied. Expression of displacements, temperature, thermal stresses, and thermal gradient for most general anisotropic thermoelastic plates of finite thickness are obtained in the analysis. The calculation is then carried forward for slightly more specialized case of...
متن کاملStress Waves in a Generalized Thermo Elastic Polygonal Plate of Inner and Outer Cross Sections
The stress wave propagation in a generalized thermoelastic polygonal plate of inner and outer cross sections is studied using the Fourier expansion collocation method. The wave equation of motion based on two-dimensional theory of elasticity is applied under the plane strain assumption of generalized thermoelastic plate of polygonal shape, composed of homogeneous isotropic material. The freque...
متن کاملThermoelastic Response of a Rotating Hollow Cylinder Based on Generalized Model with Higher Order Derivatives and Phase-Lags
Generalized thermoelastic models have been developed with the aim of eliminating the contradiction in the infinite velocity of heat propagation inherent in the classical dynamical coupled thermoelasticity theory. In these generalized models, the basic equations include thermal relaxation times and they are of hyperbolic type. Furthermore, Tzou established the dual-phase-lag heat conduction theo...
متن کاملWave Propagation in Mixture of Generalized Thermoelastic Solids Half-Space
This paper concentrates on the reflection of plane waves in the mixture of generalized thermo elastic solid half-space. There exists quasi dilatational waves i.e. qP1, qP2, qT and two rotational waves S1, S2 in a two dimensional model of the solid. The boundary conditions are solved to obtain a system of five non-homogeneous equations for amplitude ratios. These amplitude ratios are found to de...
متن کاملVariational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory
The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...
متن کامل